Application of a Data Mining Model for Landslide Hazard Mapping
نویسندگان
چکیده
This paper deals with landslide hazard and risk analysis using Geographic Information System (GIS) and remote sensing data for Cameron Highland, Malaysia. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical/geological data and satellite images were collected and processed using GIS and image processing tools. There are ten landslide inducing parameters which are considered for the landslide hazards. These parameters are topographic slope, aspect, curvature and distance from drainage, all derived from the topographic database; geology and distance from lineament, derived from the geologic database; landuse from Landsat satellite images; soil from the soil database; precipitation amount, derived from the rainfall database; and the vegetation index value from SPOT satellite images. These factors were analyzed using an advanced artificial neural network model to generate the landslide hazard map. Each factor’s weight was determined by the backpropagation training method. Then the landslide hazard indices were calculated using the trained back-propagation weights, and finally the landslide hazard map was generated using GIS tools. Landslide locations were used to verify results of the landslide hazard map and the verification results showed 83.45% accuracy. The verification results showed sufficient agreement between the presumptive hazard map and the existing data on landslide areas.
منابع مشابه
پهنهبندی خطر زمینلغزش با استفاده از روش آماری رگرسیون لجستیک در حوضه آبریز لواسانات
18 - Ayalew. L. Yamagishi. H. Marui. H & Kanno. T. (2005). "Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications.", Engineering Geology 81. (2005). 432– 445. 19 - Ayalew,l. and Yamagishi, H. (2005):The application of GIS –based logistic regression for landslide susceptibility mapping in the Kakuda-Yaahiko M...
متن کاملProbabilistic Landslide Risk Analysis and Mapping (Case Study: Chehel-Chai Watershed, Golestan Province, Iran)
The efficiency of three statistical models, AHP surface-weighted density bivariate (semi-quantitative models), stepwise multivariate regression and logistic multivariate regression models were compared in Chehel-Chai watershed in Golestan province, Iran. In current study the hazard map was prepared according to the top model of landslide hazard map. Chehel-Chai watershed is located as one of Go...
متن کاملAssessment of landslide hazard models in Chamsangar basin
Landslide mapping is one of the approaches (which can be) used to define the slope stable critical areas and the maps prepared based on this demarcating are used in desining sustainable development. The purpose of this study is to compare the landslide susceptibility mapping models based on Fuzzy logic, Information value and area Density applied in the Chamsangar watershed. According to the tec...
متن کاملApplication of landsat imageries for mapping post-earthquake landslide, case study: 2012 Ahar-Varzegan earthquake, NW Iran
The 2012 Ahar-Varzegan earthquake and its aftershocks have not only caused huge damage with a severe loss of life and property but also induced many geo-hazards with the major type of collapse, creep, slip, debris flow, and fallings that are generally considered as landslide in this study which can cause continuous threats to the affected region. in this study, a semi-automated geo-hazard detec...
متن کاملاولویتبندی عوامل موثر بر وقوع زمینلغزش و تهیه نقشه حساسیت آن با استفاده از الگوریتم نوین جنگل تصادفی (مطالعه موردی: بخشی از استان گلستان)
Landslide as a natural hazard is very dangerous especially in mountainous areas that result in loss of human life and property around the world. Iran is always exposed to landslide hazard especially in the north and west because of climatic and topographic conditions. The aim of this research is prioritization of landslide-conditioning factors and its landslide susceptibility mapping in the par...
متن کامل